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Topological analyses were performed on room-temperature and low-tempera-

ture high-energy synchrotron-radiation data from cuprite, Cu2O, using both

single-exponential and analytical functions in the multipole model. Differences

between the re®nements of the data sets turned out to be small and the data

were found to be well suited for the analyses and for evaluations of further

properties, e.g. the electrostatic potential and the Laplacian. The ionic character

of the the copper±oxygen bond was impressively underlined by the results. On

the `empty' tetrahedral sites, minima of the charge density were always found.

1. Introduction

Recently, we presented structure re®nement results of cuprite,

Cu2O, using high-energy synchrotron-radiation data (Lipp-

mann & Schneider, 2000, referred to as LS hereinafter). The

investigations were intended as a test for the usefulness of the

available hard- and software at the HASYLAB high-energy

beamline BW5 (Bouchard et al., 1997) for charge-density

studies. The data quality turned out to be very well suited for

multipole re®nements. Additionally, we could show that it was

possible to extract an extinction-free data set prior to the

re®nement if intensities of strong low-order re¯ections from

multiple-energy data measured in the regime 75 to 150 keV

were used.

We decided to perform topological analyses on both

extinction-affected and extinction-free data in order to test the

potential of high-energy synchrotron data for quantitative

evaluations and to work out similarities and differences of the

two data sets. Following the fundamental work of Bader

(1990) on the topological analysis of charge-density distribu-

tions, numerous studies have meanwhile been published,

which include both applications and further developments of

the method. Most of the applications deal with comparisons

between theoretical and experimental results (Gatti et al.,

1992) or investigations of a series of exclusive structures or

data sets (Espinosa et al., 1998). Developments are, for

instance, focused on methods for the derivation of more

information from the analyses. For example, Abramov (1997)

proposed a functional for a relation between topological

parameters at the bond critical point and the kinetic energy.

Further work deals with practical computing algorithms for

the graphical mapping and analysis of the density, the gradient

vector ®eld and the Laplacian etc. (Souhassou & Blessing,

1999).

In addition to the analysis of the total charge density itself,

valuable information is also provided by analysing quantities

derived from the density, especially the electrostatic moments

(Spackman, 1992), the potential (Politzer & Truhlar, 1981) and

the Laplacian (Flensburg et al., 1995; Flaig et al., 1998).

Selecting cuprite as test structure for our investigations was

not arbitrary since it had earlier been examined using con-

ventional X-rays (Lewis et al., 1982; Restori & Schwarzenbach,

1986) and `low-energy' synchrotron radiation (Kirfel &

Eichhorn, 1990), which made comparisons easily possible.

Moreover, a sample from the same origin as used in the latter

experiment was available and the same data-analysis software

was applied.

The chemical bonding of copper and oxygen has recently

gained much interest owing to its importance in high-Tc

superconductors (Humphreys, 1999). Hence, the results

presented here can be regarded as a preliminary stage to a

forthcoming investigation of superconductor structures.

15 years ago, Nagel (1985) and Marksteiner et al. (1986)

published theoretical calculations of the charge density of

cuprite. They found that the charge densities at copper and

oxygen are not spherically symmetric. Additionally, it was

assumed that the CuÐO distance of 1.85 AÊ is considerably

smaller than the sum of the ionic radii, which leads to the

hypothesis of a covalent-bonding fraction. However, recently,

Wang & Schwarz (2000) pointed out that the sum of the ionic

radii ®ts quite well the separation of the ions in cuprite.

Moreover, the experimentally observed charge depletion in

the region between the ions by Kirfel & Eichhorn (1990) and

LS is in contrast to the naive assumption of covalency, see e.g.

Schwarz et al. (1986, 1989) and Irle et al. (1992). Thus, it seems

worthwhile to perform a topological analysis in order to

determine the properties at the bond critical points quantita-

tively.
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Since cuprite has a hardness of 4 and a Debye temperature

of only 184 K, both thermal diffuse scattering and the Uij of

the Debye±Waller factors are large compared with those of

well known standard structures like corundum or silicon. In

order to check the reliability of the re®nement parameters

obtained from the ambient temperature measurements, they

are compared to the results of a low-temperature experiment.

The paper is organized as follows: ®rst, the re®nement

results of our high-energy synchrotron-radiation data sets are

brie¯y summarized and the results of the new low-tempera-

ture data re®nement are presented. Then, the critical points of

the charge-density distributions are presented and analyzed.

In addition, space partitioning was performed, and further

properties like the electrostatic potential and the Laplacian of

the density are presented. Additionally, the electric ®eld

gradient was investigated. The presentation of the analyses is

completed by a comparison of the charge density on the

`empty' tetrahedral sites with the results recently published by

Zuo et al. (1999). Finally, our results are summarized and

conclusions are made.

2. Data and refinements

The room-temperature (CUHE) and the extinction-corrected

(CUEC, Table 1) data sets have already been presented in LS.

Additionally, a low-temperature experiment at 20 K was

performed on the same sample and the data set (CULT)

consisted of 150 unique re¯ections up to sin �=� � 1:2 AÊ ÿ1.

All data were measured using 100 keV synchrotron radiation

at the HASYLAB high-energy beamline BW5. The data

reduction was carried out as described in LS.

High- and low-temperature data sets differ in two features.

On the one hand, many weak high-order re¯ections, which are

insigni®cant at room temperature, have signi®cant intensities

at low temperatures. On the other hand, the very weak so-

called `forbidden' re¯ections (re¯ection indices eeo, e � even,

o � odd) are mainly due to anisotropic thermal vibrations

and, hence, most of them are insigni®cant at low temperatures.

Table 2 presents the number of re¯ections contributing to the

four parity groups for the different data sets.

Multipole re®nements were performed using four different

models, which are based on different orbital functions

(Table 3).

(a) EXP: analytical Hartree±Fock wave functions (Clementi

& Roetti, 1974), which had been expanded in terms of Slater-

type basis functions and included as ®xed linear combinations

in both XD (Koritsanszky et al., 1995) and VALRAY (Stewart

& Spackman, 1983), were applied for the core density. For the

valence electrons and higher multipoles, single Slater-type

exponentials were used.

(b) AN1: the ®xed linear combinations of the expanded

analytical neutral-atom Hartree±Fock wave functions were

used for all monopoles and multipoles.

(c) and (d) AN2 and AN3: compared with AN1, the Cu

neutral-atom functions were replaced by two types of analy-

tical functions for Cu+ with different contributions to the

monopole shells. The Cu+ functions were calculated by R. F.

Stewart.

Model AN2 is based on three form-factor shells assuming

2 electrons in the core, 8 electrons in the inner and 18 elec-

trons in the outer valence shell. Model AN3 follows a

chemical-type partitioning, which used four monopole form-

factor shells including 2, 8, 8 and 10 electrons, respectively.

The overlap of the third and fourth shells was 0.964, which

re¯ects the similar compactness of the 3d with the outer s and

p self-orbital products (Stewart, 1999). In the re®nement using

AN3 functions, the ®rst- and second-shell electrons were

considered as the core.

Re®nements using models EXP and AN1 were started with

neutral atoms as promolecule, and AN2 and AN3 with Cu+

and O2ÿ, respectively. The strategy was based on a start cycle

using the independent-atom model (IAM) in order to ®nd

start parameters for the anisotropic thermal displacement

factors (TDF) and the extinction, and subsequent cycles

including at ®rst only the population coef®cients of the higher

multipoles, then the radial parameters and ®nally also the

valence monopole parameters. During the multipole re®ne-

ment, the IAM was re-re®ned several times in order to check

the TDFs and to stabilize the procedure. The TDFs varied

only a few � in all cases. In the last cycle, the signi®cantly

changed parameters were re®ned altogether in order to ®nd

the absolute minimum of the ®t. In the case of �0 re®nements,

however, these had to be ®xed in the last cycles. Table 4

summarizes the R�F�'s, Rw�F�'s and the goodnesses of ®t

as derived from VALRAY re®nements. All re®nements

converged yielding agreement and weighted agreement

factors below 1%.

Table 1
Re®ned data sets; N is the number of unique re¯ections.

Data set Explanation N

CUHE Room temperature data 152
CUEC 9 extinction-corrected re¯ections

+ 143 extinction-free re¯ections of CUHE
152

CULT 20 K data 150

Table 2
Number of re¯ections contributing to the different parity groups.

Parity group 20 K data 300 K data

ooo 34 32
eee 40 46
ooe 66 55
eeo 10 19P

150 152

Table 3
Re®nement models.

Model Function(s)

EXP Single exponentials
AN1 Analytical functions for Cu and O
AN2 Analytical functions for Cu+ and O (three form-factor shells)
AN3 Analytical functions for Cu+ and O (four form-factor shells)



The weighted agreement factors vary between 0.0082 and

0.0094 and showed no signi®cant differences comparing the

data sets with each other. The same holds for a comparison of

the different models. All goodnesses of ®t were close to one

(1.11±1.27), but a closer look reveals that the EXP re®nements

were marginally better than the re®nements using analytical

functions. This trend is emphasized by a comparison of the

residual indices R(F), e.g. using the CUHE data 0.0049 for the

EXP model and 0.0067±0.0077 for the analytical function

models. Here, the use of AN1 and AN2 also yields an im-

proved ®t compared with model AN3. Further tests showed

that only the choice of the valence monopole function is

responsible for the differences.

Additionally, improved agreement indices are found for the

CUHE and CULT data sets compared with CUEC. This

behaviour is due to a deterioration of the statistical accuracy

of the data by the extinction correction, as has already been

mentioned in LS.

In order to cross-check the results, all re®nements were

carried out using both VALRAY (Stewart & Spackman, 1983)

and XD (Koritsanszky et al., 1995), which differ in re®ning the

radial functions of the single exponentials. Using XD, the

parameter �0 in

Rl��0r� �
�n�l��2

l

�n�l� � 3�! ��
0r�n�l� exp�ÿ�l�

0r� �1�

was re®ned, whereas in VALRAY the re®nements are based

on the ®t of � in

Rl�r� �
�n�l��3

l

�n�l� � 2�! �r�
n�l� exp�ÿ�lr�: �2�

The re®nement-program differences are shown in Table 5 for

the data set CUHE and the model EXP. The differences for

R(F), Rw�F� and the GoF were always found to be below 2%

and for the TDFs below 3%, respectively. Note that, owing to

different normalization factors, the population parameters

cannot be compared. A second check was performed using

XD and the analytical functions provided by VALRAY and

vice versa. Again, no signi®cant differences occurred. Hence,

we concluded that the re®nement results were not dependent

on the re®nement programs but only on the data and the

models.

Fig. 1 shows the total charge density in the copper±oxygen

plane derived from the three data sets using model EXP. Total

density maps are presented here because these data were used

for the critical-point determinations and analyses. Differences

between the maps are only visible in the low-density regions

and the differences are small. Error maps were calculated

using the variance±covariance matrix ", i.e. the variance in

property A derived from Nv parameters Pi is calculated by

�2�A� � S2
XNv

i;j

dA

dPi

� �
"ij

dA

dPj

� �
; �3�

where S is the goodness of ®t (Cruickshank & Robertson,

1953; Koritsanszky et al., 1995). The corresponding error maps

show various features, but on a scale that is several orders of

magnitude below the scale of the density maps. This is illu-

strated in detail in Figs. 2(a)±( f), where sections of the maps

are presented. For example, the maximum error in Fig. 2(d) is
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Table 4
Re®nement results: R�F� =Rw�F� =GoF; source: VALRAY.

Data EXP AN1 AN2 AN3

CUHE 0.0045 / 0.0082 / 1.07 0.0068 / 0.0091 / 1.19 0.0067 / 0.0091 / 1.19 0.0077 / 0.0094 / 1.23
CUEC 0.0085 / 0.0089 / 1.17 0.0087 / 0.0088 / 1.16 0.0086 / 0.0090 / 1.18 0.0093 / 0.0092 / 1.21
CULT 0.0059 / 0.0082 / 1.16 0.0054 / 0.0085 / 1.19 0.0059 / 0.0090 / 1.26 0.0057 / 0.0090 / 1.27

Figure 1
5 � 5 AÊ maps of the total charge density in the (110) plane derived from
(a) CUHE±EXP, (c) CUEC±EXP and (e) CULT±EXP. Contour lines on a
geometrical scale, starting at 0.15 e AÊ ÿ3, line n at 0:15� 2n. Lines at 1.2
and �10 e AÊ ÿ3 are dashed. Centre at 0, 0, 0. Corresponding error maps
derived from (b) CUHE±EXP, (d) CUEC±EXP and ( f ) CULT±EXP.
Contours starting at 0.005 e AÊ ÿ3, line n at 0:005� 1:5n. Dashed lines at
0.011 and 0.086 e AÊ ÿ3. The densities along the straight lines are shown in
Fig. 2. Source: VALRAY.
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0.23 e AÊ ÿ3 and has to be compared with a density of about

50 e AÊ ÿ3 in Fig. 2(c). A comparison of the maximum errors of

the different data sets shows similarities between CUHE and

CUEC, i.e. the maxima near the copper and the oxygen nuclei

are approximately equal in height. The low-temperature data,

however, yield much smaller errors near the oxygen nuclei.

The reason is obviously the different consistency of the data

sets. The CULT data have a larger percentage of weak high-

order ooe (`oxygen') re¯ections (see Table 2), which leads to a

more precise determination of the density near oxygen.

3. Examination of the critical points

Bader's topological analysis is now well established as a

powerful tool for a quantitative examination and description

of charge densities and chemical bonds, and the algorithms

have been coded and implemented in structure re®nement

and analysis computer-program packages. Both VALRAY and

XD allow for the analysis of the gradient vector ®eld of a

three-dimensional charge-density distribution in order to ®nd

the `critical points', where the gradient vanishes. By diag-

onalization of the Hessian matrix, which consists of the second

derivatives of the charge density, i.e. the matrix elements are

@2�=@xi@xj, the eigenvalues can be found, and these principal

curvatures are used to characterize the critical points and to

divide them up into four groups: (3,ÿ3) peaks or local

maxima, where all second derivatives are negative; (3,ÿ1)

passes or saddle points, where two are negative and one is

positive; (3,�1) pales or ring citical points, where one is

negative and two are positive; and (3,�3) pits or local minima,

where all second derivatives are positive (Johnson & Burnett,

1996).

At ®rst, all unique critical points in the cuprite unit cell were

determined. In both computer programs, the search of the

critical points is based on algorithms, which start on given

points in the gradient ®eld and trace the gradient vector back

until a critical point is reached. Using XD, the systematic

search was carried out in a polar coordinate system, i.e. on

shells around 0.5,0.5,0.5. The shell radius was varied in steps

of 0.1 AÊ and the maximum radius was 31=2a0=2. Using

VALRAY, a cubic grid (edge lengths a0) was used as start

value. A raster of 0.1 AÊ was chosen, starting at fractional

coordinate 0,0,0 and ending at 1.0,1.0,1.0.

Since both rasters were chosen with rather narrow

distances, many critical points were found several times, and

these duplicates had to be sorted out. This procedure reduced

Table 5
Multipole re®nement results of CUHE±EXP.

Parameter VALRAY XD

Cu U11 1935 (1) 1932 (3)
U12 ÿ85.7 (5) ÿ86.7 (11)
�0 5.9 (5)
�2 5.27 (6)
�4 6.6 (2)
�0 2.44 (1)
Y20 ÿ0.63 (2) ÿ0.10 (1)
Yc 0.23 (4) 0.09 (2)

O Uiso 1878 (4) 1890 (7)
�0 3.7 (1)
�3 6.9 (6)
�4 3.8 (5)
� 0.998 (3)
�0 1.67 (2)
Y32ÿ ÿ0.13 (3) ÿ0.010 (3)
Yc ÿ0.8 (2) ÿ0.017 (6)
CT 0.57 (3) 0.62 (4)

R(F) 0.0045 0.0046
Rw�F� 0.0082 0.0083
GoF 1.07 1.08

Explanation of symbols used above and in the text.

Parameter Explanation

Uij �105 AÊ 2

�i; �
0 Radial parameters

Yc Cubic hexadecapole
CT Formal charge transfer from Cu towards O

Figure 2
Charge density along the lines indicated in Fig. 1. (a) CUHE±EXP, (c)
CUEC±EXP and (e) CULT±EXP, and corresponding errors (b), (d) and
( f ).



the number of points to 60: 6 maxima, 20 bond points, 24 ring

points and 10 minima. Then the Morse relations were applied,

which are

nÿ b� rÿ c � 0; n � 1; b � 3; r � 3; c � 1; �4�
where n, b, r, c denote the total number of nuclear, bond, ring

and cage points, respectively (Morse & Cairns, 1969; Pendas et

al., 1997). The sets of critical points obeyed these relations and

were ®nally checked for symmetry equivalence, yielding only

seven unique critical points in the cuprite unit cell (Table 6; the

maxima at Cu and O have been omitted). Results of VALRAY

and XD were in good agreement.

It has to be mentioned here that several search attempts

yielded more than these unique points, e.g., instead of the

saddle point at 0.75,0.25,0, two or three (3,�1) ring points

were detected. However, a closer look always revealed that

these additional points stem from incomplete re®nements, i.e.

the absolute re®nement minimum was not properly found.

Hence, in the following re®nements, care was taken in ®nding

the absolute minimum, e.g. in VALRAY the criterion for

convergence was set to 10ÿ8.

Some of the results of the critical point investigations are

now discussed in detail.1 The most important point in the

cuprite structure is the bond critical point (3,ÿ1) between Cu

and O atoms. Tables 7 and 8 summarize the characteristics of

this point derived from the various data and models. The

location of the critical point varies between fractional coor-

dinates 0.1227 and 0.1267, i.e. with ¯uctuations of about 3%.

Although the differences are small, a tendency is visible.

Comparing the data sets, according to the CUHE data, the

bond point is closer to the copper in 0,0,0 and closer to the

oxygen for the other two data sets. Comparing the models, one

®nds that the bond point is much closer to the copper for the

EXP model.

An analogous tendency is found for the density at the

critical point. The density is larger according to the CUHE

data compared with the other data sets, and it is larger

according to the EXP model compared with the analytical

function models. However, the relative differences of these

quantities are larger than the relative differences between the

locations: the minimum density is 0.673 and the maximum is

0.816 e AÊ ÿ3, i.e. the relative difference here is about 20%.

The ratio of the principal curvatures j�1j=�3 and the

Laplacian at a bond critical point provide information for a

classi®cation of chemical bonding. A curvature ratio � 1 is

typical for closed-shell interactions, while for shared inter-

actions the ratio increases with bond strength. Accordingly,

the Laplacian is positive for a dominating closed-shell inter-

action and negative for covalent bonding.

Table 8 gives curvature ratios between 0.1396 and 0.1869

and Laplacians between 14.708 and 17.476 e AÊ ÿ5, respectively,

both indicating an ionic dominated CuÐO bond in Cu2O. The

Laplacians of CUHE and CUEC are nearly identical but

different from those of CULT. These ®ndings can be well

ascribed to the stronger in¯uence of the high-order re¯ections

on the Laplacian. CUHE and CUEC data share the same

high-order re¯ections, while those of CULT are different.

Comparing the models, the Laplacian is always larger in the

re®nements that used analytical function models compared

with those using exponential functions.

A second bond point is found at 0.75,0.25,0 and symmetry-

equivalent positions, but the charge density is very small at

these critical points (Table 9). Another interesting feature of

this critical point is the ellipticity, which is de®ned as

" � ��1 ÿ �2�=�2; �5�
and which gives a hint for a certain amount of � bonding in

many structures. However, the ellipticity derived here is

affected with large uncertainties and in some cases ��"�>",
i.e. the values are insigni®cant. Hence, these ®ndings let us

assume that the charge-density modelling in this low-density

region is less accurate and therefore less reliable compared

with the regions closer to the nuclei and that the properties

here are strongly in¯uenced by the applied model.
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Table 7
First rows: location of the bond critical point (fractional coordinates
x � y � z); second rows: charge density � (e AÊ ÿ3) at these points; source:
VALRAY.

Data EXP AN1 AN2 AN3

CUHE 0.1227 (2) 0.1248 (25) 0.1241 (10) 0.1248 (11)
0.816 (2) 0.793 (13) 0.766 (12) 0.789 (14)

CUEC 0.1247 (2) 0.1250 (10) 0.1267 (10) 0.1263 (11)
0.773 (2) 0.756 (9) 0.761 (8) 0.749 (9)

CULT 0.1256 (8) 0.1261 (38) 0.1262 (13) 0.1266 (14)
0.758 (9) 0.696 (20) 0.673 (16) 0.685 (17)

Table 6
Unique critical points in the unit cell of cuprite found by VALRAY; data: CUHE±EXP.

The maxima at the nuclei are omitted. The table shows the fractional coordinates, the critical point type, the charge density � (e AÊ ÿ3) at the points, the Laplacian
r2� (e AÊ ÿ5) and the eigenvalues �i of the Hessian; source: VALRAY.

No. x y z Type � r2� �1 �2 �3

1 0.1227 (2) 0.1227 (2) 0.1227 (2) (3,ÿ1) 0.816 (2) 14.872 (38) ÿ4.106 (29) ÿ4.106 (29) 23.084 (36)
2 0.75 0.25 0.0 (3,ÿ1) 0.092² 0.607² ÿ0.119² ÿ0.114² 0.838²
3 0.6746 (1) 0.1548 (1) 0.1548 (1) (3,�1) 0.073² 0.405² ÿ0.059² 0.139² 0.325²
4 0.75 0.25 0.25 (3,�3) 0.068² 0.325² 0.090² 0.090² 0.145²
5 0.5 0.0 0.0 (3,�3) 0.058² 0.379 (1) 0.031² 0.031² 0.317 (1)

² E.s.d. less than 0.001.

1 A complete list of all parameters of all critical points is presented at http://
www-hasylab.desy.de/groups/schneider_group/ecds/ecds.html.
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The other critical points are one pale and two minima. The

location of the pale varies considerably between the data sets

and model types, and the coordinates are affected with large

uncertainties (Table 10). One of the minima is located in the

unoccupied copper tetrahedrons (e.g. at 0.75,0.25,0.25, Table

11). A closer look at the table reveals that here the densities

derived from the different data sets do not differ very much

but the densities derived from the different models differ

considerably. Since the models in principle differ by the de®-

nition of the copper density functions, i.e. the monopoles, the

quadrupoles and the hexadecapoles, again the modelling of

the copper density has an important in¯uence on the correct

interpretation and the quantitative determination of the

charge density in a region far from the nuclei. A strong

in¯uence of the density model on the location and properties

of the critical points has also been observed in other struc-

tures. For example, Peres et al. (1999) used various multipole

expansions in order to model the experimentally determined

density of ammonium dihydrogen phosphate and they found

no signi®cant differences in the agreement factors and residual

Fourier maps. On the other hand, the properties and deriva-

tives of the bond critical points changed dramatically from

model to model. Thus, in certain structures, the choice of the

model, i.e. the basis set, is crucial for a proper evaluation and

interpretation.

4. Space partitioning

According to the theory of topological analyses, the total

charge density can be well separated into atomic basins, where

the sum of the partial energies ascribed to the individual

atoms is equal to the total energy (Bader & Beddall, 1972).

The atomic basins can be determined by an analysis of the

gradient vector ®eld of the total charge density. Each gradient

vector terminates at an attractor (normally a nucleus) and the

sum of those points, from which the gradients end at the same

attractor, de®nes an atomic basin. Thus, the basins are

enclosed by surfaces, which are not crossed by gradient

vectors, i.e. at each surface point the surface normal vector

n(r) obeys

r��r� � n�r� � 0: �6�

The following results are calculated using the space-parti-

tioning algorithm included in VALRAY. Table 12 shows the

volumes of the atomic basins, the total charge inside the

copper and the oxygen basins, and the charge transfer

according to these results compared with the formal charge

transfer, which was calculated from the re®ned monopole

populations. First, it is evident that in all cases the sum of the

contributions from two copper basins and one oxygen basin

equals the total charge of 66 electrons per asymmetric unit.

Table 9
First rows: charge density � (e AÊ ÿ3) and Laplacian r2� (e AÊ ÿ5) at the second critical point; second rows: ellipticity "; source: VALRAY.

Data EXP AN1 AN2 AN3

CUHE 0.092² / 0.607² 0.054 (8) / 0.700 (18) 0.032 (1) / 0.610 (7) 0.036 (2) / 0.661 (18)
0.031 (1) 0.401 (280) 0.619 (464) 0.538 (405)

CUEC 0.084 (1) / 0.510 (1) 0.076 (2) / 0.579 (14) 0.032 (1) / 0.613 (8) 0.032 (2) / 0.617 (19)
0.038 (12) 0.316 (589) 0.335 (284) 0.347 (314)

CULT 0.094² / 0.630 (1) 0.076 (4) / 0.599 (16) 0.033 (1) / 0.624 (7) 0.034 (1) / 0.647 (14)
0.175 (5) 0.176 (278) 0.287 (356) 0.210 (281)

² E.s.d. less than 0.001.

Table 10
Locations of the (3,�1) critical point; fractional coordinates x and y �� z�; source: VALRAY.

Data EXP AN1 AN2 AN3

CUHE 0.6746 (1) / 0.1548 (1) 0.6572 (55) / 0.1364 (71) 0.6497 (71) / 0.1209 (94) 0.6525 (66) / 0.1260 (86)
CUEC 0.6730 (1) / 0.1547 (3) 0.6574 (71) / 0.1355 (95) 0.6549 (61) / 0.1311 (78) 0.6548 (65) / 0.1310 (84)
CULT 0.6882 (1) / 0.1594 (2) 0.6736 (187) / 0.1493 (217) 0.6711 (64) / 0.1455 (82) 0.6732 (54) / 0.1481 (69)

Table 8
First rows: eigenvalues �1 (� �2) and �3 of the Hessian; second rows: ratio j�1j=�3 and Laplacian r2� (e AÊ ÿ5) at the bond critical point; source:
VALRAY.

Data EXP AN1 AN2 AN3

CUHE ÿ4.106 (29) / 23.084 (36) ÿ4.380 (188) / 24.650 (689) ÿ4.412 (157) / 25.563 (760) ÿ4.495 (157) / 25.526 (874)
0.1779 / 14.872 (38) 0.1777 / 15.891 (287) 0.1726 / 16.738 (232) 0.1761 / 16.536 (224)

CUEC ÿ4.390 (32) / 23.489 (39) ÿ4.284 (138) / 24.240 (631) ÿ4.494 (124) / 24.559 (749) ÿ4.521 (161) / 24.847 (792)
0.1869 / 14.708 (45) 0.1767 / 15.673 (166) 0.1830 / 16.323 (211) 0.1819 / 16.282 (244)

CULT ÿ3.354 (94) / 21.993 (28) ÿ3.314 (185) / 23.488 (785) ÿ3.384 (193) / 24.244 (730) ÿ3.450 (190) / 24.323 (750)
0.1525 / 15.285 (173) 0.1411 / 16.860 (260) 0.1396 / 17.476 (296) 0.1418 / 17.422 (275)



This can be regarded as an indication that the space-parti-

tioning algorithm worked quite well with the high-energy

synchrotron data. Second, it is also obvious that, according to

all results, the charge transfer is far from 1 electron, but in

most cases in the regime of 0.4 to 0.6 electrons, which is close

to chemical considerations (Wang & Schwarz, 2000). Third,

the charge transfer derived from the space partitioning in most

cases is larger than that from the simple comparison of the

monopoles, a fact that has already been observed for other

structures (Kirfel, 2000). Since the atomic basins are covering

the whole space in the cell, which is evident from the volumes

given in Table 12, we assume that the partitioning of the

density far from the nuclei is responsible for these differences.

A comparison of the results using the various charge-

density models, however, yields rather different results. For

the CUHE data, the charge transfer is always about 0.5 elec-

trons, both from the monopole populations and from the space

partitioning. Only in the case of the partitioning from CUHE±

EXP (i.e. using data set CUHE and model EXP) is the transfer

signi®cantly larger.

The CUEC data yields an approximately 0.1±0.2 electrons

lower charge transfer. Here, only the partitioning values of

CUEC±EXP and CUEC±AN1 are in the 0.5 electrons regime.

The CULT data values show rather large variations between

0.29 and 0.7 electrons.

Comparison of the models shows that the values based on

the analytical function re®nements are lower than those of

EXP. An explanation might be given with respect to the

population of the valence monopoles. In the analytical func-

tion models, the outer monopole of the copper atom is occu-

pied with 19 (AN1), 18 (AN2) and 10 (AN3) electrons,

respectively (omitting the charge transfer). The valence

monopoles in the EXP model, however, are only populated

with the charge, which was transfered from Cu to O (ÿCT for

copper and �2CT for oxygen). Thus, the EXP model is more

¯exible for modelling the density in the interatomic regions.

This assumption is underlined by the smaller aggreement

indices (Table 4).

5. Electric field gradient

An interesting feature of the cuprite structure is the consid-

erably large component of the electric ®eld gradient (EFG)

tensor at the copper site along [111] (rEzz). KruÈ ger & Meyer-

Berkhout (1952) and Kushida et al. (1956) reported

jrEzzj � 1:34� 1022 and 1:02� 1022 V mÿ2, respectively,

measured by nuclear quadrupole resonance. These results

were numerically supported by an evaluation of 22 keV

synchrotron data by Kirfel & Eichhorn (1990). Using direct-

space calculations according to Stewart (1979), the re®ne-

ments yielded rEzz � 1:04ÿ 1:44� 1022 V mÿ2, i.e. always

positive signs.

Theoretical calculations of the EFG, however, yielded quite

different results. According to cluster calculations of Nagel

(1985), the sign is negative, whereas an ionic point-charge

model (Hafner & Nagel, 1983) leads to a positive sign. Recent

calculations of Petrilli et al. (1998) using the linear augmented

plane-wave and the projector augmented wave methods

yielded ÿ0:83 and ÿ0:86� 1022 V mÿ2, respectively.

The results of our re®nements are obtained by direct-space

calculations using VALRAY and are shown in Table 13. The

sign of rEzz is always positive, but the numerical values are

slightly larger compared with those of Kirfel & Eichhorn

(1990). The best agreement was found for the low-tempera-

ture data. Unfortunately, the error calculation of the EFG is

not yet implemented in VALRAY and so we estimated the

uncertainty by calculating various EFG's using variations of

the multipole parameters according to their standard uncer-

tainties. The relative standard uncertainties of the EFGs were

found to be 20±30% (depending on the model), i.e. even small

deviations in the parameters yielded considerable changes of

rEzz.

Deformation features close to the nuclei and with very

important contributions to rE make it dif®cult to determine

the EFG from X-ray measurements with suf®cient accuracy

(Lecomte, 2000). This would explain the quantitative differ-

ences between our results and those of earlier measurements
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Table 11
Charge density � (e AÊ ÿ3) at the (3,�3) minimum at 075, 025, 025; source:
VALRAY.

Data EXP AN1 AN2 AN3

CUHE 0.067² 0.028 (7) 0.013 (1) 0.016 (2)
CUEC 0.063² 0.057 (2) 0.013 (1) 0.015 (1)
CULT 0.072² 0.057 (20) 0.014 (2) 0.016 (1)

² E.s.d. less than 0.001.

Table 12
First rows: total charge from integration of the densities inside the atomic
basins (Cu and O); second rows: calculated charge transfer from Cu
towards O from space partitioning and from monopole populations; third
rows: atomic volumes of Cu and O basins (AÊ ÿ3); source: VALRAY.

Data EXP AN1 AN2 AN3

CUHE 28.16 / 9.68 28.53 / 8.94 28.50 / 9.00 28.54 / 8.92
0.84 / 0.59 0.47 / 0.43 0.50 / 0.58 0.46 / 0.55

13.67 / 11.58 14.20 / 10.52 13.71 / 11.48 13.69 / 11.53
CUEC 28.43 / 9.14 28.54 / 8.88 28.69 / 8.62 28.71 / 8.58

0.57 / 0.34 0.46 / 0.24 0.31 / 0.37 0.29 / 0.36
13.74 / 11.43 13.96 / 11.00 13.94 / 11.02 13.94 / 11.02

CULT 28.30 / 9.40 28.46 / 9.08 28.67 / 8.65 28.71 / 8.59
0.70 / 0.48 0.54 / 0.31 0.33 / 0.39 0.29 / 0.37

13.61 / 11.59 13.83 / 11.14 13.88 / 11.04 13.86 / 11.09

Table 13
ComponentrEzz of the electric ®eld gradient at the copper site in units of
1022 V mÿ2; source: VALRAY.

Data EXP AN1 AN2 AN3

CUHE 2.511 6.286 5.431 5.563
CUEC 5.833 5.645 5.742 5.981
CULT 2.009 2.039 2.220 2.196



research papers

582 Lippmann and Schneider � Cuprite Acta Cryst. (2000). A56, 575±584

by Kirfel & Eichhorn (1990). However, the accuracy should be

good enough to underline the positive sign of rEzz.

6. Electrostatic potential

In order to extend the analysis of the data, some other

properties were calculated. Fig. 3 shows the electrostatic

potential in the CuÐO plane, derived from EXP densities.

The potential � due to a charge-density distribution � centred

at a nucleus M with charge ZM is de®ned as

��r0� �
X

M

ZM

RM ÿ r0
ÿ
Z

��r�
jrÿ r0j dr; �7�

and is therefore a long-range property. Thus, for simplicity, the

maps in Fig. 3 are calculated assuming only a CuÐOÐCuÐ

OÐCu partial structure, which allows qualitative comparisons

of the potential near the nuclei, whereas the quantitative

values are somewhat arbitrary. The potential maps in Figs.

3(a), (c) and (e) indicate no signi®cant differences between the

data sets and no hint of any charge localization between the

atoms, i.e. no covalent bonding was found. In order to study

differences between the data sets, additional potential distri-

butions were calculated neglecting the non-spherical multi-

poles. These distributions were subtracted from the total

potentials, and ®nally maps were calculated according to these

`deformation potentials'. The deformation part of CUHE and

CUEC data (Figs. 3b and d) is mainly dominated by the

quadrupoles at the Cu site, whereas only marginal structures

are visible near the O nuclei. The CULT data, however, also

show some `deformation potential' near oxygen. It has to be

mentioned that the scale of these maps is approximately three

orders of magnitude less than that of Figs. 3(a), (c) and (e),

which explains the similarity of the `total potential' maps.

7. Laplacian of the charge density

The values of the Laplacian distribution, which is de®ned as

L�r� � ÿ�h- 2=4m�r2��r�; �8�

at the critical points are presented in Tables 6, 8 and 9. The

Laplacian relief maps calculated from the three data sets using

Figure 4
Laplacian relief maps in the (110) plane calculated from (a) CUHE±EXP,
(c) CUEC±EXP and (e) CULT±EXP and corresponding `deformation
Laplacian' maps (b), (d) and ( f ) (explanation also in the text). Source:
XD.

Figure 3
Potential maps in the (110) plane calculated from (a) CUHE±EXP,
(c) CUEC±EXP and (e) CULT±EXP, and corresponding `deformation
potential' maps (b), (d) and ( f ) (explanation in the text). Source: XD.



model EXP, as an example, are also rather similar, both near

the nuclei and in the interatomic regions (Figs. 4a, c and e). In

particular, there are no spikes or features along the bond paths

and the atoms are well separated, which is again an indication

of the ionic bonding in the cuprite structure. Differences are

only visible in the `deformation Laplacian', which is calculated

in the same manner as the `deformation potential' presented

above. Here, the most pronounced features result from

CUHE, while the spikes near oxygen are considerably lower in

the CUEC map and nearly invisible for CULT.

8. Density on the `empty' tetrahedral sites

Recently, some discussions took place about the presence of a

charge-density accumulation on the `empty' tetrahedral sites

in the cuprite structure (Fig. 5). Zuo et al. (1999) published

results from an analysis of combined electron diffraction and

X-ray data, where they found a local density maximum of

0.2 e AÊ ÿ3 in the interstitial regions, from which they concluded

that a signi®cant amount of covalent bonding between the

copper atoms exists.

According to quantum-chemical calculations using density-

functional methods and self-consistent perturbation theory

(SCF±MP2), Wang & Schwarz (2000) reported no maxima on

these sites and a density below 0.08 e AÊ ÿ3. This value is in

agreement with our results. As an example, Fig. 6 shows the

densities derived using CUHE±EXP. For example, the total

density at the site 0.75,0.25,0.25 is 0.067 e AÊ ÿ3 and ���� is

0.00505 e AÊ ÿ3.

The residual density (�o ÿ �c) in Figs. 6(e) and ( f) yields

� ÿ0:12 e AÊ ÿ3 on the site, i.e. according to the measured

structure factors there is even less density in the tetrahedra

than derived from the re®ned model. According to Table 11,

all re®nements yielded densities between 0.013 and

0.072 e AÊ ÿ3, i.e., even if there is a large uncertainty about the

quantitative value, our data provide no hints for a charge

accumulation inside the tetrahedra.

Since the copper sublattice is face-centred cubic, it could

easily be compared with the lattice of pure copper but the

cardinal difference between these lattices is the copper±

copper distance, which is 2.556 AÊ in copper and 3.019 AÊ in

cuprite. Wang & Schwarz (2000), however, pointed out that

the attractors in cuprite may have their origins in the super-

position of the tails of copper d±s hybrids and that interactions

are only possible up to distances of about 2.5 AÊ at maximum.

Since, according to the chemical considerations, the CuÐCu

distance in cuprite is too large for an interaction of the ions,

the (3,ÿ1) bond point that we found here (Table 9) could also

be an artefact of the superposition of the d±s hybrid tails

mentioned above (Schwarz, 2000).
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Figure 5
Structure of cuprite. Large light spheres: Cu; small darker spheres: O. A
unit cell is indicated by the light sticks, and one of the tetrahedra by the
dark sticks, respectively. Additionally, the plane investigated in Fig. 6 is
shown and the centre of the tetrahedron is indicated as a black dot.

Figure 6
(a) Charge density in a plane including the tetrahedral interstitial void at
0.75, 0.25, 0.25 in the centre. Contour lines as in Fig. 1. Horizontal axis:
[001], vertical axis: [�110]. (b) Corresponding error map. The density and
error along the horizontal (broken) and vertical lines (solid) are shown in
(c) and (d). The residual density along the horizontal line in (e) is
presented in ( f ). Source: VALRAY.
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9. Conclusions and summary

The results of our investigation of the charge density of cuprite

have shown that high-energy synchrotron data are well suited

for reliable topological analyses and the derivation of further

properties from the charge-density distribution. Moreover, the

comparison of our data sets and the comparison of the

different models provides detailed experimental insight on the

copper±oxygen bonding in cuprite and can thus help to answer

open questions.

The various re®nements show both similarities and differ-

ences. With respect to the analyses of the bond critical points

and the space partitioning, we can con®rm that the bonding in

the cuprite structure is dominated by ionic interactions. The

charge transfer derived from both monopole populations and

space partitioning was found in the range�0.4±0.6 electrons in

most cases, which is consistent with chemical considerations.

The principal curvatures, the Laplacians and the electrostatic

potentials at the CuÐO bond critical point also give evidence

for an ionic bonding scheme in Cu2O. Further similarities

found in all analyses are the existence of only seven unique

critical points (Table 6), however, the densities at the non-

bonding points are small and can differ considerably

depending on both the model and the data set considered.

When the different data sets are compared, it is not possible

to prefer or reject one of our measurements. In most cases, the

marginal differences can be ascribed to the different compo-

sition of the data sets, i.e. number and type of weak re¯ections.

When the different models are compared, however, signi®cant

differences between the EXP model on the one hand and the

AN models on the other hand were found in almost all

investigations, which can mainly be ascribed to the kind of

copper monopole functions used. Conclusively, if results of

re®nements of different structures have to be compared, it is

essential to use the same model functions in the re®nements.

A comparison of the results from the programs VALRAY

and XD was not discussed in detail, mainly because of the

good agreement between the re®nements and the results of

the topological analyses with both programs, if the re®nement

start values were properly chosen. Thus, all presented results

can be well ascribed to the data, the models and the structure.
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